Artificial basic intelligence (AGI) is a type of expert system (AI) that matches or goes beyond human cognitive capabilities throughout a vast array of cognitive tasks. This contrasts with narrow AI, which is limited to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably surpasses human cognitive capabilities. AGI is thought about among the meanings of strong AI.
Creating AGI is a main objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research study and development jobs across 37 nations. [4]
The timeline for accomplishing AGI stays a topic of continuous argument among researchers and specialists. As of 2023, some argue that it might be possible in years or years; others keep it may take a century or longer; a minority think it may never ever be attained; and another minority claims that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed issues about the fast progress towards AGI, suggesting it might be accomplished sooner than numerous expect. [7]
There is argument on the specific meaning of AGI and regarding whether contemporary big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical subject in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have actually stated that alleviating the danger of human termination posed by AGI must be a global top priority. [14] [15] Others find the advancement of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic smart action. [21]
Some academic sources book the term "strong AI" for computer system programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to solve one particular problem but does not have general cognitive abilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as people. [a]
Related principles consist of synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is a lot more normally smart than human beings, [23] while the idea of transformative AI relates to AI having a large effect on society, for instance, similar to the farming or industrial transformation. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They define 5 levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For instance, a competent AGI is specified as an AI that outperforms 50% of knowledgeable adults in a broad variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined but with a threshold of 100%. They think about large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular methods. [b]
Intelligence qualities
Researchers normally hold that intelligence is required to do all of the following: [27]
reason, usage method, fix puzzles, and make judgments under unpredictability
represent knowledge, including good sense understanding
plan
discover
- interact in natural language
- if essential, incorporate these skills in conclusion of any provided goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) consider extra qualities such as creativity (the ability to form unique psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that display a number of these capabilities exist (e.g. see computational imagination, automated thinking, decision support group, robot, evolutionary computation, smart agent). There is debate about whether modern-day AI systems possess them to an adequate degree.
Physical characteristics
Other capabilities are thought about desirable in smart systems, as they might affect intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and
- the capability to act (e.g. move and control items, modification place to check out, and so on).
This consists of the ability to find and react to threat. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and manipulate things, modification place to explore, and so on) can be desirable for some smart systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language models (LLMs) might currently be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is enough, supplied it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has never ever been proscribed a particular physical embodiment and hence does not require a capability for mobility or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to confirm human-level AGI have actually been considered, including: [33] [34]
The concept of the test is that the maker needs to try and pretend to be a male, by answering questions put to it, and it will just pass if the pretence is reasonably convincing. A substantial part of a jury, who must not be expert about devices, must be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would need to implement AGI, due to the fact that the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are many problems that have actually been conjectured to require basic intelligence to solve along with human beings. Examples include computer system vision, natural language understanding, and dealing with unforeseen scenarios while solving any real-world problem. [48] Even a particular job like translation needs a machine to check out and write in both languages, follow the author's argument (reason), understand the context (knowledge), and consistently reproduce the author's initial intent (social intelligence). All of these issues require to be solved concurrently in order to reach human-level maker efficiency.
However, much of these jobs can now be carried out by contemporary big language models. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on many criteria for checking out comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI researchers were encouraged that synthetic general intelligence was possible and that it would exist in simply a couple of decades. [51] AI pioneer Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could create by the year 2001. AI leader Marvin Minsky was a consultant [53] on the job of making HAL 9000 as practical as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the issue of developing 'artificial intelligence' will considerably be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being apparent that scientists had actually grossly undervalued the difficulty of the project. Funding firms became doubtful of AGI and put scientists under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a casual conversation". [58] In action to this and the success of specialist systems, both market and federal government pumped money into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the 2nd time in 20 years, AI scientists who anticipated the impending achievement of AGI had actually been misinterpreted. By the 1990s, AI researchers had a reputation for making vain pledges. They became reluctant to make forecasts at all [d] and avoided mention of "human level" artificial intelligence for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI accomplished industrial success and scholastic respectability by concentrating on particular sub-problems where AI can produce verifiable results and commercial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the innovation industry, and research study in this vein is heavily moneyed in both academic community and industry. As of 2018 [upgrade], development in this field was thought about an emerging pattern, and a mature stage was expected to be reached in more than 10 years. [64]
At the turn of the century, lots of mainstream AI researchers [65] hoped that strong AI could be developed by integrating programs that solve different sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to artificial intelligence will one day satisfy the standard top-down route over half way, prepared to offer the real-world proficiency and the commonsense knowledge that has actually been so frustratingly elusive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are legitimate, then this expectation is hopelessly modular and there is really just one viable route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we ought to even try to reach such a level, considering that it appears getting there would just total up to uprooting our symbols from their intrinsic significances (therefore merely minimizing ourselves to the practical equivalent of a programmable computer). [66]
Modern artificial general intelligence research

The term "synthetic basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the ability to satisfy objectives in a wide variety of environments". [68] This type of AGI, characterized by the ability to increase a mathematical definition of intelligence rather than display human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a variety of visitor lecturers.
As of 2023 [upgrade], a small number of computer system researchers are active in AGI research, and many contribute to a series of AGI conferences. However, significantly more researchers have an interest in open-ended knowing, [76] [77] which is the idea of enabling AI to constantly find out and innovate like human beings do.
Feasibility
As of 2023, the development and potential achievement of AGI remains a subject of extreme dispute within the AI community. While traditional agreement held that AGI was a far-off objective, current improvements have led some researchers and industry figures to declare that early types of AGI may currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This prediction failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century since it would require "unforeseeable and essentially unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level expert system is as broad as the gulf in between existing space flight and useful faster-than-light spaceflight. [80]
An additional challenge is the lack of clarity in specifying what intelligence entails. Does it need consciousness? Must it display the ability to set objectives as well as pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are facilities such as preparation, reasoning, and causal understanding required? Does intelligence require explicitly duplicating the brain and its particular faculties? Does it need emotions? [81]
Most AI scientists think strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, however that the present level of progress is such that a date can not precisely be anticipated. [84] AI experts' views on the feasibility of AGI wax and subside. Four surveys carried out in 2012 and 2013 suggested that the median quote amongst professionals for when they would be 50% confident AGI would get here was 2040 to 2050, depending on the survey, with the mean being 2081. Of the experts, 16.5% addressed with "never ever" when asked the same concern however with a 90% confidence instead. [85] [86] Further present AGI progress factors to consider can be discovered above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong bias towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers published a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we believe that it might reasonably be deemed an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of humans on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has actually currently been attained with frontier models. They composed that hesitation to this view comes from four primary reasons: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]
2023 also marked the emergence of big multimodal models (big language designs capable of processing or creating several techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "spend more time thinking before they react". According to Mira Murati, this capability to think before reacting represents a brand-new, extra paradigm. It enhances design outputs by investing more computing power when producing the response, whereas the model scaling paradigm enhances outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the business had actually accomplished AGI, stating, "In my opinion, we have actually already attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than the majority of people at many tasks." He likewise attended to criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their learning process to the scientific technique of observing, hypothesizing, and verifying. These statements have stimulated debate, as they count on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show exceptional flexibility, they may not totally satisfy this standard. Notably, Kazemi's comments came quickly after OpenAI got rid of "AGI" from the terms of its collaboration with Microsoft, triggering speculation about the business's strategic intents. [95]
Timescales
Progress in synthetic intelligence has actually historically gone through durations of fast progress separated by periods when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to develop space for additional development. [82] [98] [99] For instance, the hardware offered in the twentieth century was not adequate to carry out deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that quotes of the time needed before a truly versatile AGI is developed differ from 10 years to over a century. Since 2007 [upgrade], the agreement in the AGI research study community seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually provided a large range of opinions on whether progress will be this rapid. A 2012 meta-analysis of 95 such viewpoints discovered a bias towards predicting that the beginning of AGI would occur within 16-26 years for modern-day and historical predictions alike. That paper has actually been criticized for how it categorized opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the traditional approach used a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the current deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly readily available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in first grade. A grownup pertains to about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of carrying out numerous varied tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to adhere to their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 various tasks. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, contending that it exhibited more basic intelligence than previous AI models and showed human-level efficiency in tasks spanning numerous domains, such as mathematics, coding, and law. This research triggered a debate on whether GPT-4 might be considered an early, insufficient version of artificial basic intelligence, highlighting the need for further exploration and examination of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The concept that this stuff might really get smarter than individuals - a few people thought that, [...] But many people believed it was method off. And I thought it was method off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly said that "The progress in the last couple of years has actually been quite amazing", and that he sees no reason it would slow down, expecting AGI within a decade or even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test at least in addition to human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI staff member, estimated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is thought about the most promising path to AGI, [116] [117] whole brain emulation can act as an alternative method. With whole brain simulation, a brain design is built by scanning and mapping a biological brain in information, and after that copying and imitating it on a computer system or another computational gadget. The simulation model must be adequately devoted to the initial, so that it behaves in virtually the exact same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been discussed in artificial intelligence research [103] as a method to strong AI. Neuroimaging innovations that might deliver the needed detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will become offered on a similar timescale to the computing power needed to emulate it.
Early estimates
For low-level brain simulation, an extremely effective cluster of computers or GPUs would be needed, offered the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various price quotes for the hardware needed to equal the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a procedure utilized to rate existing supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was accomplished in 2022.) He utilized this figure to anticipate the essential hardware would be readily available sometime in between 2015 and 2025, if the exponential growth in computer system power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed an especially in-depth and openly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The synthetic neuron design presumed by Kurzweil and used in lots of existing artificial neural network applications is simple compared to biological nerve cells. A brain simulation would likely have to capture the comprehensive cellular behaviour of biological neurons, presently comprehended only in broad overview. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers a number of orders of magnitude larger than Kurzweil's price quote. In addition, the quotes do not account for glial cells, which are known to contribute in cognitive procedures. [125]
A basic criticism of the simulated brain method stems from embodied cognition theory which asserts that human embodiment is an essential aspect of human intelligence and is necessary to ground significance. [126] [127] If this theory is proper, any completely practical brain model will require to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, however it is unidentified whether this would be enough.

Philosophical viewpoint
"Strong AI" as defined in philosophy
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness".
Weak AI hypothesis: An artificial intelligence system can (only) imitate it believes and has a mind and consciousness.
The first one he called "strong" since it makes a more powerful statement: it assumes something unique has actually happened to the machine that surpasses those capabilities that we can evaluate. The behaviour of a "weak AI" machine would be specifically similar to a "strong AI" device, but the latter would likewise have subjective conscious experience. This usage is likewise typical in academic AI research and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to indicate "human level artificial general intelligence". [102] This is not the very same as Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most synthetic intelligence scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it in fact has mind - indeed, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have various significances, and some elements play significant roles in sci-fi and the principles of synthetic intelligence:
Sentience (or "sensational awareness"): The ability to "feel" understandings or emotions subjectively, instead of the ability to factor about understandings. Some philosophers, such as David Chalmers, use the term "consciousness" to refer exclusively to sensational awareness, which is roughly comparable to sentience. [132] Determining why and how subjective experience emerges is called the difficult issue of consciousness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not conscious, then it does not seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had achieved life, though this claim was extensively challenged by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, particularly to be knowingly knowledgeable about one's own ideas. This is opposed to simply being the "topic of one's thought"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the same method it represents everything else)-however this is not what people generally mean when they use the term "self-awareness". [g]
These characteristics have a moral measurement. AI life would provide rise to concerns of welfare and legal defense, likewise to animals. [136] Other aspects of consciousness associated to cognitive abilities are also relevant to the idea of AI rights. [137] Determining how to incorporate advanced AI with existing legal and social frameworks is an emerging issue. [138]
Benefits
AGI could have a wide range of applications. If oriented towards such objectives, AGI could help alleviate various issues in the world such as appetite, poverty and health problems. [139]
AGI could enhance performance and efficiency in many tasks. For instance, in public health, AGI could speed up medical research study, significantly against cancer. [140] It might look after the senior, [141] and equalize access to quick, premium medical diagnostics. It could offer enjoyable, inexpensive and tailored education. [141] The need to work to subsist could end up being obsolete if the wealth produced is correctly redistributed. [141] [142] This also raises the concern of the place of humans in a significantly automated society.
AGI might likewise help to make reasonable decisions, and to prepare for and avoid catastrophes. It might likewise help to profit of potentially catastrophic innovations such as nanotechnology or climate engineering, while avoiding the associated threats. [143] If an AGI's primary objective is to prevent existential catastrophes such as human termination (which might be tough if the Vulnerable World Hypothesis turns out to be true), [144] it might take steps to significantly minimize the threats [143] while decreasing the effect of these measures on our lifestyle.
Risks
Existential threats
AGI might represent several types of existential risk, which are threats that threaten "the premature termination of Earth-originating intelligent life or the permanent and extreme damage of its capacity for preferable future advancement". [145] The risk of human termination from AGI has been the topic of numerous disputes, however there is also the possibility that the development of AGI would cause a completely problematic future. Notably, it could be used to spread and preserve the set of worths of whoever establishes it. If mankind still has ethical blind spots similar to slavery in the past, AGI might irreversibly entrench it, preventing ethical progress. [146] Furthermore, AGI might facilitate mass monitoring and indoctrination, which might be used to create a stable repressive around the world totalitarian regime. [147] [148] There is likewise a threat for the makers themselves. If makers that are sentient or otherwise worthwhile of moral factor to consider are mass produced in the future, participating in a civilizational course that forever overlooks their well-being and interests could be an existential disaster. [149] [150] Considering just how much AGI could enhance humanity's future and help in reducing other existential threats, Toby Ord calls these existential risks "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI poses an existential danger for humans, which this threat requires more attention, is controversial but has been endorsed in 2023 by numerous public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed extensive indifference:
So, dealing with possible futures of enormous benefits and threats, the specialists are definitely doing everything possible to ensure the very best result, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll show up in a couple of years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The potential fate of humankind has often been compared to the fate of gorillas threatened by human activities. The comparison specifies that higher intelligence enabled humankind to control gorillas, which are now vulnerable in methods that they might not have actually anticipated. As a result, the gorilla has actually ended up being a threatened types, not out of malice, however just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humanity which we must beware not to anthropomorphize them and interpret their intents as we would for humans. He stated that people won't be "wise enough to develop super-intelligent makers, yet ridiculously stupid to the point of providing it moronic objectives with no safeguards". [155] On the other side, the concept of important convergence recommends that practically whatever their objectives, smart agents will have factors to try to survive and obtain more power as intermediary steps to accomplishing these objectives. And that this does not require having emotions. [156]
Many scholars who are worried about existential risk supporter for more research into resolving the "control problem" to answer the concern: what types of safeguards, algorithms, or architectures can developers execute to maximise the possibility that their recursively-improving AI would continue to act in a friendly, rather than devastating, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which might cause a race to the bottom of security precautions in order to launch items before competitors), [159] and the use of AI in weapon systems. [160]
The thesis that AI can pose existential danger also has critics. Skeptics generally state that AGI is not likely in the short-term, or that issues about AGI distract from other problems connected to existing AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for many individuals outside of the innovation market, existing chatbots and LLMs are already perceived as though they were AGI, resulting in additional misconception and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an unreasonable belief in an omnipotent God. [163] Some scientists think that the interaction projects on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and researchers, released a joint statement asserting that "Mitigating the risk of extinction from AI must be an international concern alongside other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. workforce might have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their tasks affected". [166] [167] They think about office workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a much better autonomy, ability to make choices, to interface with other computer tools, but likewise to manage robotized bodies.

According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or many people can end up miserably poor if the machine-owners effectively lobby versus wealth redistribution. So far, the trend appears to be toward the 2nd option, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to adopt a universal standard earnings. [168]
See also
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI result
AI safety - Research location on making AI safe and advantageous
AI alignment - AI conformance to the desired goal
A.I. Rising - 2018 movie directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence - Process of automating the application of maker learning
BRAIN Initiative - Collaborative public-private research study effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General game playing - Ability of artificial intelligence to play various video games
Generative expert system - AI system capable of generating content in reaction to triggers
Human Brain Project - Scientific research task
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured makers.
Moravec's paradox.
Multi-task learning - Solving numerous device finding out jobs at the exact same time.
Neural scaling law - Statistical law in machine knowing.
Outline of synthetic intelligence - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or type of expert system.
Transfer learning - Machine learning technique.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specifically designed and optimized for expert system.
Weak expert system - Form of artificial intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the short article Chinese space.
^ AI founder John McCarthy writes: "we can not yet identify in basic what type of computational treatments we wish to call smart. " [26] (For a discussion of some definitions of intelligence utilized by expert system researchers, see approach of expert system.).
^ The Lighthill report specifically criticized AI's "grand goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became identified to fund just "mission-oriented direct research, rather than standard undirected research study". [56] [57] ^ As AI founder John McCarthy writes "it would be a fantastic relief to the rest of the employees in AI if the developers of new basic formalisms would reveal their hopes in a more secured kind than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a basic AI textbook: "The assertion that makers might possibly act smartly (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are in fact believing (rather than simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic basic intelligence advantages all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020.
^ a b c "AI timelines: What do professionals in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and warns of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad actors from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine hazard is not AI itself but the method we deploy it.
^ "Impressed by synthetic intelligence? Experts say AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might present existential dangers to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the risk of extinction from AI should be a worldwide top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals caution of risk of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing makers that can outthink us in general methods.
^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no factor to fear AI as an existential threat.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the full series of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is changing our world - it is on all of us to ensure that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent qualities is based upon the topics covered by significant AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reevaluated: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of challenging exams both AI versions have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers avoided the term expert system for fear of being viewed as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite progress in maker intelligence, artificial general intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of skilled opinion. In Fundamental issues of artificial intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.