
Artificial general intelligence (AGI) is a type of expert system (AI) that matches or exceeds human cognitive capabilities throughout a large range of cognitive tasks. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably exceeds human cognitive abilities. AGI is considered one of the meanings of strong AI.

Creating AGI is a primary goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research study and development jobs throughout 37 countries. [4]
The timeline for attaining AGI remains a topic of ongoing dispute amongst researchers and specialists. Since 2023, some argue that it may be possible in years or years; others keep it might take a century or longer; a minority think it may never be achieved; and another minority claims that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has actually revealed issues about the fast development towards AGI, recommending it could be attained sooner than lots of anticipate. [7]
There is argument on the precise definition of AGI and relating to whether modern-day big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many specialists on AI have actually stated that alleviating the danger of human termination positioned by AGI needs to be a worldwide priority. [14] [15] Others find the advancement of AGI to be too remote to present such a danger. [16] [17]
Terminology

AGI is likewise known as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]
Some scholastic sources reserve the term "strong AI" for computer programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to fix one particular problem but does not have basic cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as human beings. [a]
Related principles consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is a lot more usually intelligent than human beings, [23] while the notion of transformative AI connects to AI having a large influence on society, for example, similar to the farming or commercial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, competent, professional, virtuoso, and superhuman. For example, a skilled AGI is defined as an AI that surpasses 50% of skilled grownups in a large range of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified however with a limit of 100%. They think about big language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other widely known meanings, and some scientists disagree with the more popular methods. [b]
Intelligence traits
Researchers usually hold that intelligence is required to do all of the following: [27]
reason, use technique, fix puzzles, and make judgments under unpredictability
represent understanding, consisting of common sense knowledge
strategy
learn
- communicate in natural language
- if essential, incorporate these abilities in conclusion of any provided objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about extra characteristics such as creativity (the capability to form novel mental images and ideas) [28] and autonomy. [29]
Computer-based systems that show a lot of these abilities exist (e.g. see computational imagination, automated thinking, choice assistance system, robotic, evolutionary calculation, intelligent representative). There is debate about whether modern-day AI systems possess them to a sufficient degree.
Physical qualities
Other capabilities are considered preferable in smart systems, as they may affect intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and
- the ability to act (e.g. move and manipulate objects, modification location to check out, etc).
This consists of the ability to identify and react to threat. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and control items, modification location to explore, etc) can be preferable for some intelligent systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) might already be or become AGI. Even from a less positive point of view on LLMs, there is no company requirement for an AGI to have a human-like form; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in place of human senses. This analysis aligns with the understanding that AGI has never ever been proscribed a particular physical embodiment and hence does not demand a capacity for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to validate human-level AGI have actually been considered, including: [33] [34]
The concept of the test is that the device needs to attempt and pretend to be a male, by answering concerns put to it, and it will just pass if the pretence is reasonably convincing. A significant portion of a jury, who ought to not be expert about devices, should be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would need to execute AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are many issues that have been conjectured to require general intelligence to solve in addition to human beings. Examples include computer vision, natural language understanding, and dealing with unforeseen situations while resolving any real-world problem. [48] Even a specific task like translation requires a device to read and write in both languages, follow the author's argument (factor), comprehend the context (knowledge), and faithfully reproduce the author's initial intent (social intelligence). All of these issues need to be resolved simultaneously in order to reach human-level maker performance.
However, much of these jobs can now be carried out by contemporary large language models. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on numerous criteria for checking out comprehension and visual thinking. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI scientists were persuaded that synthetic basic intelligence was possible which it would exist in just a couple of decades. [51] AI leader Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might produce by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the job of making HAL 9000 as sensible as possible according to the consensus predictions of the time. He said in 1967, "Within a generation ... the issue of developing 'synthetic intelligence' will significantly be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it became obvious that researchers had grossly ignored the trouble of the task. Funding companies became doubtful of AGI and put scientists under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a casual discussion". [58] In reaction to this and the success of professional systems, both market and federal government pumped money into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never fulfilled. [60] For the 2nd time in 20 years, AI researchers who predicted the imminent achievement of AGI had actually been misinterpreted. By the 1990s, AI researchers had a reputation for making vain pledges. They became unwilling to make predictions at all [d] and prevented mention of "human level" artificial intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained business success and scholastic respectability by concentrating on particular sub-problems where AI can produce verifiable results and commercial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation market, and research in this vein is greatly funded in both academia and industry. Since 2018 [update], development in this field was considered an emerging trend, and a fully grown phase was anticipated to be reached in more than 10 years. [64]
At the turn of the century, numerous traditional AI scientists [65] hoped that strong AI might be developed by integrating programs that resolve numerous sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up path to expert system will one day fulfill the conventional top-down route majority method, ready to offer the real-world skills and the commonsense knowledge that has actually been so frustratingly evasive in thinking programs. Fully intelligent machines will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:
The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really just one viable path from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even attempt to reach such a level, because it appears getting there would simply total up to uprooting our signs from their intrinsic significances (thus merely reducing ourselves to the practical equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research
The term "artificial general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to satisfy goals in a wide variety of environments". [68] This type of AGI, characterized by the ability to maximise a mathematical definition of intelligence instead of exhibit human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a variety of visitor speakers.
Since 2023 [update], a little number of computer scientists are active in AGI research, and many contribute to a series of AGI conferences. However, progressively more researchers are interested in open-ended knowing, [76] [77] which is the concept of enabling AI to continuously discover and innovate like humans do.

Feasibility

Since 2023, the advancement and prospective achievement of AGI remains a topic of intense dispute within the AI neighborhood. While traditional agreement held that AGI was a distant objective, current improvements have actually led some scientists and industry figures to claim that early types of AGI may already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a male can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century because it would require "unforeseeable and fundamentally unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between contemporary computing and human-level expert system is as wide as the gulf in between present space flight and useful faster-than-light spaceflight. [80]
A further difficulty is the absence of clarity in specifying what intelligence involves. Does it need awareness? Must it display the ability to set objectives in addition to pursue them? Is it purely a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding needed? Does intelligence need clearly replicating the brain and its specific professors? Does it require feelings? [81]
Most AI scientists think strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that today level of progress is such that a date can not precisely be predicted. [84] AI specialists' views on the expediency of AGI wax and wane. Four polls conducted in 2012 and 2013 recommended that the typical estimate among professionals for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% answered with "never ever" when asked the same question but with a 90% confidence rather. [85] [86] Further current AGI progress factors to consider can be discovered above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They examined 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers released a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we believe that it could reasonably be deemed an early (yet still insufficient) version of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of basic intelligence has actually currently been achieved with frontier models. They composed that reluctance to this view comes from four main factors: a "healthy apprehension about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "devotion to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]
2023 likewise marked the introduction of large multimodal models (large language models efficient in processing or producing numerous methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time believing before they react". According to Mira Murati, this ability to think before responding represents a new, additional paradigm. It improves design outputs by investing more computing power when creating the answer, whereas the design scaling paradigm enhances outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the company had actually attained AGI, specifying, "In my opinion, we have already accomplished AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than most human beings at many tasks." He also attended to criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their learning procedure to the clinical technique of observing, hypothesizing, and validating. These declarations have triggered debate, as they rely on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate impressive adaptability, they might not totally fulfill this requirement. Notably, Kazemi's comments came quickly after OpenAI removed "AGI" from the regards to its partnership with Microsoft, prompting speculation about the business's strategic objectives. [95]
Timescales
Progress in expert system has actually historically gone through durations of rapid development separated by periods when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to produce space for further development. [82] [98] [99] For example, the hardware available in the twentieth century was not enough to execute deep knowing, which requires great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that price quotes of the time needed before a really flexible AGI is built vary from ten years to over a century. Since 2007 [update], the agreement in the AGI research community seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have given a broad variety of viewpoints on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints discovered a predisposition towards forecasting that the beginning of AGI would happen within 16-26 years for modern-day and historic forecasts alike. That paper has been criticized for how it categorized viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the conventional approach utilized a weighted amount of scores from various pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the current deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly readily available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in first grade. A grownup pertains to about 100 on average. Similar tests were brought out in 2014, with the IQ score reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of carrying out numerous varied jobs without specific training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to comply with their security standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 various tasks. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI designs and demonstrated human-level performance in jobs covering numerous domains, such as mathematics, coding, and law. This research study stimulated a dispute on whether GPT-4 might be thought about an early, insufficient version of artificial basic intelligence, stressing the requirement for further exploration and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton stated that: [112]
The concept that this things might really get smarter than people - a couple of people thought that, [...] But the majority of people thought it was way off. And I thought it was way off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly said that "The development in the last couple of years has been pretty incredible", which he sees no factor why it would decrease, anticipating AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test at least along with people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI employee, estimated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is considered the most appealing path to AGI, [116] [117] entire brain emulation can act as an alternative technique. With entire brain simulation, a brain model is constructed by scanning and mapping a biological brain in information, and after that copying and simulating it on a computer system or another computational device. The simulation model need to be sufficiently faithful to the initial, so that it acts in virtually the very same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been gone over in artificial intelligence research study [103] as a method to strong AI. Neuroimaging technologies that might deliver the necessary comprehensive understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of enough quality will appear on a similar timescale to the computing power needed to imitate it.
Early approximates
For low-level brain simulation, a really powerful cluster of computers or GPUs would be required, given the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, supporting by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon an easy switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different price quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a procedure used to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He used this figure to anticipate the required hardware would be readily available sometime in between 2015 and 2025, if the exponential development in computer system power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed a particularly detailed and openly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic neuron design presumed by Kurzweil and utilized in many present artificial neural network applications is easy compared to biological nerve cells. A brain simulation would likely need to record the comprehensive cellular behaviour of biological neurons, presently comprehended just in broad overview. The overhead presented by full modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would need computational powers numerous orders of magnitude larger than Kurzweil's estimate. In addition, the price quotes do not account for glial cells, which are understood to contribute in cognitive processes. [125]
A fundamental criticism of the simulated brain method obtains from embodied cognition theory which asserts that human embodiment is an important aspect of human intelligence and is needed to ground meaning. [126] [127] If this theory is proper, any completely practical brain model will require to encompass more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unknown whether this would suffice.
Philosophical point of view

"Strong AI" as defined in approach
In 1980, thinker John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness".
Weak AI hypothesis: An artificial intelligence system can (just) act like it believes and has a mind and consciousness.
The very first one he called "strong" since it makes a stronger statement: it presumes something unique has taken place to the device that surpasses those abilities that we can evaluate. The behaviour of a "weak AI" device would be specifically similar to a "strong AI" machine, however the latter would also have subjective conscious experience. This usage is also typical in academic AI research and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level artificial general intelligence". [102] This is not the same as Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most synthetic intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it actually has mind - undoubtedly, there would be no way to tell. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have various significances, and some elements play considerable roles in science fiction and the ethics of artificial intelligence:
Sentience (or "incredible awareness"): The capability to "feel" understandings or feelings subjectively, as opposed to the capability to factor about understandings. Some thinkers, such as David Chalmers, utilize the term "awareness" to refer solely to phenomenal consciousness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience develops is referred to as the hard issue of awareness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be conscious. If we are not conscious, then it does not feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had achieved sentience, though this claim was commonly challenged by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, specifically to be knowingly knowledgeable about one's own thoughts. This is opposed to simply being the "topic of one's believed"-an os or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the same method it represents whatever else)-but this is not what people typically indicate when they utilize the term "self-awareness". [g]
These traits have an ethical measurement. AI sentience would generate issues of welfare and legal security, similarly to animals. [136] Other aspects of consciousness related to cognitive abilities are likewise relevant to the concept of AI rights. [137] Finding out how to incorporate innovative AI with existing legal and social structures is an emerging problem. [138]
Benefits
AGI could have a wide array of applications. If oriented towards such goals, AGI might assist mitigate different issues in the world such as hunger, hardship and illness. [139]
AGI could improve efficiency and performance in many tasks. For example, in public health, AGI might speed up medical research study, especially against cancer. [140] It might take care of the elderly, [141] and democratize access to rapid, premium medical diagnostics. It might offer enjoyable, cheap and individualized education. [141] The need to work to subsist might become obsolete if the wealth produced is correctly redistributed. [141] [142] This likewise raises the question of the location of human beings in a significantly automated society.
AGI could also assist to make reasonable decisions, and to anticipate and avoid catastrophes. It might also help to profit of possibly devastating innovations such as nanotechnology or environment engineering, while avoiding the associated threats. [143] If an AGI's primary objective is to prevent existential disasters such as human termination (which might be difficult if the Vulnerable World Hypothesis turns out to be true), [144] it might take procedures to significantly decrease the threats [143] while decreasing the effect of these measures on our quality of life.
Risks
Existential risks
AGI might represent several types of existential risk, which are risks that threaten "the premature termination of Earth-originating intelligent life or the permanent and extreme destruction of its potential for preferable future advancement". [145] The threat of human extinction from AGI has been the topic of lots of disputes, however there is also the possibility that the development of AGI would lead to a completely problematic future. Notably, it could be utilized to spread out and maintain the set of values of whoever develops it. If mankind still has moral blind areas similar to slavery in the past, AGI may irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI could help with mass security and brainwashing, which could be used to produce a steady repressive worldwide totalitarian routine. [147] [148] There is likewise a danger for the machines themselves. If devices that are sentient or otherwise deserving of ethical consideration are mass developed in the future, taking part in a civilizational path that indefinitely overlooks their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI could enhance humankind's future and help in reducing other existential risks, Toby Ord calls these existential dangers "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI poses an existential risk for humans, which this danger requires more attention, is questionable but has been backed in 2023 by many public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, dealing with possible futures of enormous advantages and dangers, the professionals are surely doing everything possible to guarantee the very best result, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll get here in a few decades,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The prospective fate of humankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence permitted humanity to control gorillas, which are now vulnerable in ways that they might not have actually prepared for. As an outcome, the gorilla has actually become a threatened types, not out of malice, however just as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control mankind and that we need to be cautious not to anthropomorphize them and interpret their intents as we would for human beings. He stated that individuals won't be "smart adequate to design super-intelligent machines, yet extremely dumb to the point of providing it moronic objectives without any safeguards". [155] On the other side, the concept of crucial convergence suggests that practically whatever their objectives, intelligent agents will have factors to try to survive and obtain more power as intermediary actions to achieving these objectives. Which this does not need having emotions. [156]
Many scholars who are concerned about existential danger supporter for more research into solving the "control issue" to address the question: what kinds of safeguards, algorithms, or architectures can developers execute to increase the possibility that their recursively-improving AI would continue to act in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could lead to a race to the bottom of security preventative measures in order to release products before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can pose existential danger also has critics. Skeptics normally state that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other issues connected to present AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of people beyond the innovation industry, existing chatbots and LLMs are already viewed as though they were AGI, causing additional misconception and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some researchers believe that the interaction campaigns on AI existential danger by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and researchers, released a joint statement asserting that "Mitigating the danger of extinction from AI must be a worldwide priority alongside other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of employees may see a minimum of 50% of their tasks impacted". [166] [167] They consider office employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a much better autonomy, capability to make decisions, to user interface with other computer tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of glamorous leisure if the machine-produced wealth is shared, or a lot of people can wind up miserably poor if the machine-owners successfully lobby against wealth redistribution. Up until now, the pattern seems to be toward the 2nd option, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to embrace a universal fundamental earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain
AI result
AI security - Research location on making AI safe and useful
AI positioning - AI conformance to the desired goal
A.I. Rising - 2018 film directed by Lazar Bodroža
Expert system
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General game playing - Ability of expert system to play different games
Generative synthetic intelligence - AI system efficient in producing material in response to prompts
Human Brain Project - Scientific research job
Intelligence amplification - Use of information innovation to augment human intelligence (IA).
Machine principles - Moral behaviours of manufactured devices.
Moravec's paradox.
Multi-task learning - Solving numerous machine discovering tasks at the same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or form of artificial intelligence.
Transfer learning - Artificial intelligence strategy.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specifically developed and enhanced for expert system.
Weak expert system - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the post Chinese space.
^ AI founder John McCarthy writes: "we can not yet identify in basic what kinds of computational treatments we desire to call smart. " [26] (For a discussion of some meanings of intelligence utilized by artificial intelligence scientists, see approach of expert system.).
^ The Lighthill report particularly slammed AI's "grand goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became identified to fund only "mission-oriented direct research, rather than fundamental undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a terrific relief to the rest of the workers in AI if the inventors of new general formalisms would reveal their hopes in a more protected kind than has actually in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a basic AI textbook: "The assertion that machines might possibly act intelligently (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are really thinking (instead of mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that artificial general intelligence benefits all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is creating synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were recognized as being active in 2020.
^ a b c "AI timelines: What do specialists in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton stops Google and warns of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad stars from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows sparks of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine risk is not AI itself however the way we deploy it.
^ "Impressed by synthetic intelligence? Experts state AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential dangers to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humanity requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of termination from AI need to be an international top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts caution of risk of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing devices that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no reason to fear AI as an existential danger.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete series of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is changing our world - it is on all of us to ensure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent qualities is based upon the topics covered by significant AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of difficult exams both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers prevented the term expert system for worry of being considered as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite progress in maker intelligence, artificial basic intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not develop into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in synthetic intelligence: A survey of skilled viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting